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The yield criterion of an f cc  polycrystal under combined Ioadings is derived based on a newly 
proposed polycrystal model. The single crystal is assumed to be non-hardening. Cases of 
biaxial tension and tension-torsion tests are all studied. It is shown that the macro yield stress 
component of the polycrystal can always be identified with the critical resolved shear stress % 
multiplied by some orientation factor M. A Monte Carlo procedure is used to evaluate M. The 
results of the present model are found in reasonable agreement with those of the Taylor- 
Bishop-Hill model, and in excellent agreement with the Mises' criterion. 

1. In troduct ion  
The inception of the plastic flow in a material under 
combined stresses is conventionally characterized by 
postulating the existence of a yield criterion, i.e. 

F(a~/) = 0 (1) 

where F is a scalar function of the stress state of the 
material such that no plastic deformation occurs as 
F < 0 and plastic deformation takes place only when 
F = 0. Most of various yield criteria that were pro- 
posed in the past are now only of  historic interest, 
since they usually conflict with later experiments [1]. 
For polycrystalline metals, the yield criteria of Tresca 
and von Mises are the two so far most frequently used. 
Tresca's criterion is known as the maximum shear 
stress criterion and von Mises' criterion is known as 
the maximum shear strain energy or the maximum 
octahedral shear stress criterion. However, there was 
no physical reason why the plastic behaviour of a 
polycrystalline metal should depend on the maximum 
shear stress or the maximum octahedral shear stress. 
On the other hand it has been experimentally confirmed 
that within a certain range of temperatures the plastic 
deformation of single crystals is a result of slip over 
certain crystallographic plane [2]. Furthermore, slip 
usually takes place on the slip system for which the 
resolved shear stress reaches some critical value known 
as the critical resolved shear stress r 0. Therefore, in 
principle it is possible to derive the yield criterion of a 
polycrystalline metal on the basis of crystallographic 
slips of the single crystal. Pioneering works of Sachs 
[3] and Taylor [4] laid the firm foundation for further 
developments (see the review articles of Kocks [5] and 
Lin [6]). 

The purpose of the present study is to investigate 
the yield criterion of an f c c  polycrystalline metal 
under combined stresses based on the polycrystal 
model which was developed by Chiang and Weng [7]. 
In order to compare with the classical Taylor-Bishop-  
Hill (TBH) model [8], it is assumed that the single 
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crystal is non-hardening. In other words, the critical 
resolved shear stress of the active slip systems does not 
change during plastic deformation. This assumption 
greatly simplifies the analysis carried out in the next 
section. The present results are shown in reasonable 
agreement with those of the TBH model. Further- 
more, the excellent agreement between the present 
predictions and the Mises criterion indicates that as 
far as the initial yielding is concerned, the Mises 
criterion is physically justified to be used for the low 
strain hardening f cc  polycrystalline metal. Detailed 
discussion is given in the final section. 

For easy reference, in this paper the capital letter 
represents the macro state variable; the lower-case 
letter denotes the micro state variable; the lower-case 
letter with bar over it signifies the averaged micro state 
variable. 

2. Polycrysta l  m o d e l  
Before developing the present polycrystal model, it is 
worth indicating some crucial simplifying assumptions 
involved in the following derivation. The assumptions 
include: 

(1) The polycrystal is composed of perfectly plastic 
single crystals. No deformation is allowed until the 
critical stress states (depending on how many and 
which slip systems are activated) of all the single crys- 
tals are reached. The average of these critical stress 
states is defined as the yield stress of the polycrystal. 

(2) Experimental evidence shows that the plastic 
behaviour of the grain boundary regions is different 
from that of the grain interior. But in this paper it is 
assumed that the influence of the grain boundaries can 
be safely ignored. 

(3) The ratios among the dominant stress com- 
ponents of the single crystals is the same as those of 
the polycrystal. Assumptions (1) and (2) are similar to 
the TBH model, but Taylor's other assumptions such 
as uniform strains among all grains and the least slip 
hypothesis are replaced by assumption (3). 
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For the purpose of brevity, we shall assume in the 
following derivation that the polycrystal is under 
biaxial tension state, i.e., 211 and Z22 are the only 
non-vanishing stress components (the dominant stress 
components). Let aq denote the (micro) stress tensor 
of the single crystal grain (in fact, it is better to view 
%. as the ensemble average of the stress state of the 
same crystal orientation). According to assumption 
(1), we conclude that 

t,(k) q ~,q = "c o k = 1,2 . . . . .  n (2) 

where @) ~ (~;k).~-) (k) (k) = ~wi "i + b) n~ ) is the Schmid tensor 
of the kth active slip system, bl *) and n} *) being the unit 
vectors of the slip direction and the slip plane normal 
respectively. 

If a22/al~ is denoted by 2, Equation 2 can be 
expanded as 

r U)  vll 4- 2Y22 ) O i l  4- = 'co (3) 

where 

~(k) =--- , (k)~ 9 ,  (k).,. v33 u33 4- 2VI~)O'12 -F 2v~k)0.23 4- ~v31 U3l 

representing the contribution from non-dominant 
stress components. Summing up n simultaneous 
equations in Equation 3, we obtain 

(,,(k) = (4a) \v i i  4- ~'V~2k)) 0"11 4- E ~(k) n% 
k k 

or more concisely 

n(vll + 2v22)all + n~ = n"Co (4b) 

where 

= _' x v , k )  - = - ' z  : =  -' 
VII /7 . II , V22 /7 k R 

We may rewrite Equation 4b as 

o~, - ro (5) 
~11 4- 2~22 ~11 4- 2922 

Upon taking an average over all grain orientations, we 
find that 

( ' )  
211 = ( a l l )  = 1~11 4- )c'~22 T O -  _ v,l 2v22 

(6) 

The last term of Equation 6 is negligible. This can be 
justified as follows. Consider, for instance, the contri- 
bution of ~,2. Since the magnitude of f12/(Vl, + 2v22) 
is around O (1) and it is unlikely that 012 could be 
surprisingly large, with Z~: = ( 0 . 1 2 )  --- 0 we expect 
that (~120.12(~11 4- 21~22)) would remain small in 
comparison with the first term of the right hand side 
of Equation 6. The arguments hold true for other 
non-dominant stress components. Therefore we can 
ignore the last term of Equation 6 without causing 
much error. We believe that this assumption is quite 
mild in comparison with other assumptions mentioned 
in the above. Accordingly we reach the conclusion that 

Z"  / ' ) = r0 (7a) 
I~ii -[- 2f22 

and 

Z ,  = (7b) 
-" '~11 -[- '1~22 120 

In general, 2 is not a constant. As a matter of fact, 
any a priori assumed grain interaction law (for 
example, the self consistent models [9, 10]) would 
impose some 2 distribution implicitly. But the actual 2 
distribution seems to be difficult to obtain, if not 
impossible. According to the assumption (3), in this 
paper 2 is taken to be a constant so that 

222/211 = 2 = A (8) 

and Equation 7 can further be simplified as 

( ' )  211 = _ "C O = Maro (%) 
vii 4- Ag'2a 

Z22 = As = AMaro (9b) 

By the same procedure, it can be obtained that the 
results for the cases of combined tension and torsion 
are 

where 

/ ' )  
E l l  = ~11 Jr- 2~V12 "CO = M~72~ (10a) 

2~2 = f~21~ = f~Mn% (10b) 

= 212/211 

Generalization to cases of other combined loadings is 
possible. 

From Equations (9) and (10), it is obvious that the 
problem now is reduced to the determination of  Ma 
and Mo. The same numerical procedure developed in 
[11] is used to evaluate MA and Ma. Each sample 
polycrystal containing 2000 single crystal grains of 
randomly distributed orientations is numerically 
generated. The mean values of M A and Ma of 12 such 
fc c polycrystals are calculated. It is noted that devia- 
tions of MA and Mn from the mean values are within 
1.5%. In the next section the numerical results are pre- 
sented and compared with other theoretical predictions. 

3. N u m e r i c a l  resu l ts  and c o m p a r i s o n s  
For the purpose of comparison, we use the following 
notations. Y and k denote the polycrystal yield stresses 
in uniaxial tension and pure torsion respectively. In 
the combined loadings cases, q and p denote the ratios 
of  2lily and E~>/'Y respectively. Accordingly, the 
Mises criterion gives 

k VM = 0.577Y, 

qVM = l/x/(1 _ A + A2), pVM = f~/x/( 1 + 3s 

While the present model predicts that 

k = lim f~Mn 

q = Ma/Ma=o,  p = f~Mn/Mn=o 

Since the values of Ma and Mn depend on n (the 
number of active slip systems), q and p will be varied 
for different n. In Tables I to X, the numerical results 
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T A B L E  I Results ofbiaxial tension tests, n = 1 

A 0 0.I 0.2 0.3 0.4 0.5 0.6 0,7 0.8 0.9 1.0 

M A 2.232 2.334 2.422 2.493 2.542 2.563 2.541 2.493 2.423 2.335 2.232 
AM A 0 0.2334 0.4884 0.7479 1.017 1.282 1.525 1.745 1.938 2.102 2.322 
q 1 1.046 1.085 1.117 1.139 1.148 1.138 1.117 1.086 1.046 1 
qVM 1 1.048 1.091 1.125 1.147 1.155 1.147 1.125 1.091 1.048 1 

T A B  LE I I Results of combined tension-torsion tests, n = 1 

f~ 0 0.1 0.3 0.5 0.7 I 1.5 2 5 10 oo 

M a 2.232 2.203 1.984 1.683 1.414 1.106 0.7940 0.6128 0.2537 0.1276 0 
~ M  a 0 0.2203 0.5952 0.8415 0.9877 1.106 1.191 1.226 1.269 1.276 1.281 
p 0 0.099 0.267 0.377 0.443 0.496 0.534 0.549 0.569 0.572 0.574 
pVM 0 0.099 0.266 0.378 0.445 0.500 0.539 0.554 0.575 0.576 0.577 

T A B L E  I I I  Results of biaxial tension tests, n = 2 

A 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

M A 2.336 2.453 2.568 2.676 2.762 2,797 2.762 2.677 2.569 2.454 2.336 
AM A 0 0.2453 0.5136 0.8028 1.105 1.399 1.657 1.874 2.055 2.209 2.336 
q 1 1.050 1.099 1.146 1.182 1.197 1,182 1.146 1.100 1.051 1 
qVM 1 1.048 1.091 1.125 1.147 1.155 1.t47 1.125 1.091 1.048 I 

T A B L E  IV Results of  combined tension-torsion tests, n = 2 

t2 0 0.I 0.3 0,5 0.7 1 1.5 2 5 10 oo 

M a 2.336 2.306 2.080 1.775 1.499 1.184 0.8565 0.6640 0.2766 0.1392 0 
f~M a 0 0.2306 0.6240 0.8875 1.049 1.184 1.285 1.328 1.383 1.392 1.397 
p 0 0.099 0.267 0.380 0.449 0.507 0.550 0.568 0.592 0.596 0.598 
pVM 0 0.099 0,266 0.378 0.445 0.500 0.539 0.554 0.575 0.576 0.577 

T A B  LE V Results of biaxial tension tests, n = 3 

A 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

M A 2.510 2.635 2.757 2.869 2.958 3.000 2.959 2.870 2.758 2.635 2.510 
AM A 0 0.2635 0.5514 0.8607 1.183 1.500 1.775 2.009 2.206 2.372 2.510 
q I 1.050 1.098 1.143 1.178 1.195 1.179 1.143 1.099 1.050 1 
qVM 1 1.048 1.091 1.125 1.147 1.155 1.147 1.125 1.091 1.048 1 

T A B L E  VI  Results of combined tension-torsion test. n = 3 

f~ 0 0.1 0.3 0.5 0.7 1 1.5 2 5 10 oo 

Mn 2.510 2.478 2.236 1.905 1.609 1.270 0.918 0,712 0.297 0.149 0 
f~M a 0 0.2478 0.6708 0.9525 1.126 1.270 1.377 1.424 1.485 1.490 t.500 
p 0 0.099 0.267 0.379 0.449 0.506 0.549 0.567 0.592 0.594 0.598 
pVM 0 0.099 0.266 0.378 0.445 0.500 0.539 0.554 0.575 0.576 0.577 

T A B L E  V I I  Results of biaxiaI tension tests, n = 4 

A 0 0.1 0,2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I 

M A 2.673 2.809 2.945 3.062 3.158 3.197 3.159 3.067 2.945 2.809 2.673 
AM^ 0 0.2809 0.5890 0.9186 1.263 1.599 1.895 2.147 2.356 2.528 2.673 
q 1 1.051 1.102 1.146 1.181 1,196 1.182 1.147 1.102 1.051 1 
qVM 1 1.048 1.091 1.125 1.147 1.155 1.147 1.125 1.091 1.048 1 
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TABLE VIII Results of combined tension-torsion tests, n - 4 

0 0.1 0.3 0.5 0.7 1 1.5 2 5 10 

Ma 2.673 2.639 2.378 2.033 1.718 1.358 0.981 0.760 0.316 0.I59 0 
AMa 0 0.2639 0.7134 1.017 1.203 1.358 1.472 1.520 1.580 1.590 1.597 
p 0 0.099 0.267 0.380 0.450 0.508 0.551 0.569 0.591 0.595 0.597 
pVM 0 0.099 0.266 0.378 0.445 0.500 0.539 0.554 0.575 0.576 0.577 

TABLE IX Results of biaxial tension tests, n = 5 

A 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

M A 2.898 3.040 3.171 3.284 3.368 3.400 3.369 3.284 3.171 3.039 2.898 
AM A 0 0.3040 0.6342 0.9852 1.347 1.700 2.021 2.299 2.537 2.735 2.898 
q 1 1.049 1.094 1.133 1.162 1.173 1.163 1.133 1.094 1.049 1 
qVM 1 1.048 1.091 1.125 1.147 1.155 1.147 1.125 1.091 1.048 1 

TAB LE X Results of combined tension-torsion tests, n = 5 

Q 0 0.1 0.3 0.5 0.7 1 1.5 2 5 t0 oo 

M n 2.898 2.861 2.575 2.196 1.850 1.457 1.049 0.8116 0 . 3 3 6 7  0.1690 0 
{)Ma 0 0.2861 0.7725 1.098 1.295 1.457 1.574 1.623 1.684 1.690 1.699 
p 0 0.099 0.267 0.379 0.447 0.503 0.543 0.560 0.580 0.583 0.586 
pV,U 0 0.099 0.266 0.378 0.445 0.500 0.539 0.554 0.575 0.576 0.577 

for a variety of combina t ions  of A (and f~) and n are 
presented. For  easy compar ison,  q VM and p VM are also 

included in all tables. The yield surfaces predicted by 

the present  theory are accordingly plotted in Figs l 

and 2. It is seen that the present results are in excellent 
agreement  with the von  Mises'  yield surfaces. In Fig. 

3, the present predict ion for n = 5 is compared  with 

the yield surface predicted by the TBH model. It is 

found that  reasonable  agreement  is observed. 

4. Discussion and conclusions 
The yield surface of the fc c polycrystal derived in this 

paper  is on the basis of the rigid perfect plasticity of 
the single crystal. Accordingly,  the ambigui ty  in the 

definition of yielding is avoided, otherwise it is known  

that if strain hardening  effect is present, the observed 
yield surface will be dependent  on the offset plastic 

strain level (e.g. [12]). Nevertheless, it is believed that 
the present results should be valid for investigating the 

f c c  polycrystal of  low strain hardening.  The close 

agreement  between the present predictions and the 

Mises criterion implies the following. The reason for 

the Mises criterion being so fit with the experimental  

data is neither that the material  yields because the 
shear strain energy at tains the critical value nor  that 
the material  yields because the octahedral  shear stress 
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Figure 1 Under biaxial tension tests, the theoretical yield surfaces of 
an fc c polycrystal for different values of n where n is the number of 
the active slip systems per grain. 

reaches the threshold value. The actual physical reason 

is simply because the polycrystal is made of single 

~ ' j j  

Figure 2 Under combined tension-torsion tests, the theoretical yield 
surfaces of an fcc polycrystal for different values ofn where n is the 
number of the active slip systems per grain. 
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Figure 3 Comparison of the present model with the Taylor Bishop 
Hill model. 

crystal grains which follow the well-defined Schmid 
law. 

The reasonable agreement between the TBH model 
and the present model (for n = 5) further implies that 
the yield surface of the polycrystal depends strongly 
on how many and which slip systems are activated but 
negligibly on the detailed grain-grain or grain-matrix 
interactions. This fact partially justifies the assumption 
(3) pointed out in Section 2, i.e. the assumption of 
)~ = A made in Equation 8. 

The present model can be extended to incorporate 
the effect of strain hardening. As the experiences 
gained in the previous investigations on strain harden- 
ing [7, 11], it is concluded that, under pure tension test 
or pure torsion test, the predictions of the present 

model turn out to be in reasonable agreement with 
those of the Mises theory. Therefore, it is reasonable 
to expect that, at least for radial loading in the presence 
of strain hardening, the present approach should still 
be in accord with the deformation theory based on the 
Mises criterion. Although we do not address other 
important metallurgical factors that influence the 
yield surface such as grain size in this paper, the 
approach adopted in [13, 14] may be useful in this 
respect. 

In summary, we have derived the yield criterion of 
a polycrystal on the basis of slip mechanism of the 
single crystal grain. Specific results for the fc c poly- 
crystal with {1 1 1}(1 T 0) slip systems have been calcu- 
lated and compared with the TBH model and the 
Mises phenomenological criterion. It is concluded that 
the present approach is feasible and the results are 
accurate. 
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